

2nd Annual

Brookfield Computer
Programming Challenge

2018

Problem Set

Problems:
1. Everybody Do the Flop (Flop)
2. Funny Pairs (Funny)
3. Goat Simulator (Goat)*
4. Codeforces Handle (Handle)
5. Tax Evasion (Tax)
6. Two (Two)*

*All problems have a 5 second time limit. Inefficient solutions on these problems
will result in a Time Limit Exceeded verdict. Modern computers can do about 10^8
commands per second in Java. (Python is slower, but all problems are solvable in
Python.)
**If you use packages or multiple Scanner objects, you will get all the problems
wrong. Use the default package and a single Scanner object for all input.

Everybody Do the Flop (Flop)
The Do-the-Flop Guy was a viral sensation; everybody did the flop across

the whole entire nation! But then one day, things started going wrong...
The Do-the-Flop craze caused so many head injuries that the British Cranial

Protection Center has issued a statement asking Do-the-Flop Guy to replace his
backup-dancers with robots! In an effort to minimize the concussional impact of
his dance moves, Do-the-Flop Guy is doing his best to comply with the BCPC’s
regulations. However, with flopping as dangerous as it is these days, these robots
will break permanently upon flopping. Therefore, Do-the-Flop Guy needs your help
to program them to listen for the lyrics “everybody to the flop” before flopping.

Input:

● The input will contain several lines representing the lyrics to Do-the-Flop
Guy’s next song. The last line will be “everybody do the flop”. You are
guaranteed that no lines except the last will be “everybody do the flop”. All
lines will contain only lowercase characters, spaces, and apostrophes. Lines
will not start or end with whitespace or be empty.

Output:

● For each line of song lyrics that is not exactly “everybody do the flop”
output “Wait for it...”. At the end of the song, output “FLOP!”.

Example:

Input Output

everybody do the stand up straight
everybody do the don’t fall down
everybody do the flop

Wait for it…
Wait for it...
FLOP!

everybody do the flop tomorrow
everybody do the flop

Wait for it…
FLOP!

Funny Pairs (Funny)
Mr. Haha is an honors Precalculus teacher who loves funny pairs. And pears.

Especially the funny ones. Mr. Haha considers a pair of numbers (x,y) funny if and
only if x*x = y+y. And while Mr. Haha knows of quite a few funny pears, he can’t
ever seem to recall any funny bananas.

Mr. Haha is pealing particularly funny today and would like to know if there
exists a corresponding integer y for a given x that would make the pair (x,y) funny.
And unfortunately, as Mr. Haha is busy babysitting his tangerines (usually he gets
the older fruit to babysit, but today the banana split), he needs your help. In fact,
he finds funny pairs so ap- peal-ing that he wants you to find him a whole - bunch-.
Just be careful not to - slip- up and start telling knock-knock jokes in the middle of
your output! 1

Input:

● The first line will contain a single integer n , the number of test cases
● N space-separated integers follow, each containing a single integer x i, the

first number of the ith pair.
1 ≤ n ≤ 104

0 ≤ x i ≤ 10 4

Output :

● Output n lines each containing either:
○ a single integer yi, the matching number to x i to make (x i, y i) a funny

pair
○ Or the sentence “Can he do it? Cosecant!” (without quotes) if there

exists no integer y i for which the pair would be funny.
Example:

Input Output

3
4 5 0

8
Can he do it? Cosecant!
0

The pairs (4, 8) and (0, 0) are both funny. There exists no pair (5, y) that is funny.

1 Knock Knock. (“Who’s there,” you ask?) Orange. (“Orange who?”) Orange you glad this wasn’t another
banana pun? (Get it? That was the -fruit punch-line!)

Goat Simulator (Goat)

Some elementary school teachers tell their students that they can be
anything they want when they grow up if they work hard enough. Clearly these
teachers have not had Gary. Gary wants to be a goat.

Gary works so hard at learning to grow up to be a good goat that he has
purchased a Goat Simulator video game. This game is played in a linear world
(represented by the x-axis) and contains n obstacles the player may need to
traverse in order to get from their spawn point to the food (the goal). When the
game starts, players choose the location at which their player and the food spawn.
Gary needs your help to determine the number of obstacles he would have to
traverse if he chose two given positions. Gary tried writing a program to iterate
through all obstacles for every one of his queries, but this was much too slow for
large inputs, so he needs you to write a more efficient algorithm to do this. 2

Input:
● The first line will contain a single integer n , the number of obstacles
● The second line will contain n unique integers p i, each representing the

position of an obstacle, not necessarily in ascending order.
● The third line will contain an integer Q, the number of queries.
● The following Q lines will contain two integers s i and fi, representing the

spawn location and the food location for the ith query. These points are
guaranteed to not contain any obstacles, and s i will be to the left of fi.

0 ≤ n, p i, Q, s i, fi ≤ 106

Output:
● Output a line containing a single integer: the sum of the number of obstacles

crossed across all queries.
Example:

Input Output

4
0 10 4 5
3
1 6
2 12
11 1000000

5

There are 2 obstacles from 1 to 6, 3 from 2 to 12, and 0 from 11 to 1000000.

2 Note that there is a strictly-enforced 5 second time limit. Your program must terminate
and give a correct answer even with 106 obstacles and 106 queries.

Codeforces Handle (Handle)
Peter wants to create a Codeforces account and needs your help coming up

with a handle-a name by which he will be referenced on the site. Peter wants his
handle to reflect his name as accurately as possible, but knows that since all
handles on the site have to be unique and must contain only lowercase letters, he
may not get his first choice. He decides that instead of trying things like
‘xxxpeterxxx’ or ‘legendarygrandmasterpeter’, he will try versions of his name with
combinations of vowels removed.

After not getting ‘peter’, ‘ptr’, or ‘pter’, Peter lucked out with the handle of
‘petr’, which certainly wasn’t a bad consolation prize. Because he likes to give
back to the community, Peter wants you to make a program to tell people how
many unique versions of a name exist which have some combination of vowels
removed. To make things easier, Peter will only run your program on names that do
not contain two adjacent vowels that are different (so he will not run your program
on ‘Joan’, but might on ‘David’, for example).

Note: y is not considered a vowel for the purposes of this problem.

Input:
● The first line will contain an integer n, the number of testcases.
● n lines follow, each containing a single string si, the name of the ith person

converted to all lowercase letters.
1 ≤ n ≤ 50
1 ≤ length of s i ≤ 100

Output:

● Output n lines, each containing a single integer representing the number of
unique handles for the respective name that exist following the above rule.

Example:

Input Output

4
peter
john
steeve
elizabeth

4
2
6
16

The only possible handles for john are ‘john’ and ‘jhn’.

Tax Evasion (Tax)
Bill is a good, law-abiding citizen, entirely unwilling to steal from a grocery

store. However, he also happens to be an incredibly thrifty shopper. Because he is
running short on change and is itching for the adrenaline rush of being criminally
neglecting to pay the full amount of sales taxes, Bill plans to buy his n groceries in
such a way as to pay the lowest possible price.

Bill’s state has a sales tax rate of 33.333…%, meaning that to check out
with a total price of P, Bill has to pay 1.333…* P because of his coercive,
overspending, always-up-to-no-good state government. However, because the
smallest currency available is the penny, this amount is rounded up or down to the
nearest cent (just like in Wisconsin). Bill is okay with checking out several times as
long as he can scam his state out of some of their undue taxation.

Also, Bill ironically only pays for his groceries in pennies and thought it
would be easiest if he gave you all of the prices as integers. Can you help him
determine the smallest amount he has to pay to buy all of the groceries he wants?
Input:

● The first line will contain an integer n, the number of groceries bill has.
● The second line contains n space-separated integers p i, the price of the ith

good in pennies.
1 ≤ n ≤ 105

1 ≤ p i ≤ 10 5

Output :

● Output a single integer representing the number of pennies Bill will have to
pay if he buys his groceries optimally.

Example:

Input Output

4
5 9 5 10

38

5
1 1 1 1 1

5

In the first example, Bill could buy his products in the sets of (5 5) (9 10) and pay
only 9 pennies in tax. Note that if he bought all of his items together (or
separately), he would have to pay 10 pennies in tax. In the second example, Bill
could avoid paying sales tax altogether by buying each item separately.

Two (Two)
Hooray! It’s time for the obligatory problem concerning the random

mathematical properties of an arbitrary number! And since today is the 2nd
Brookfield Computer Programming Challenge, this year’s number is 2.

Two is a pretty cool number. It’s a fibonacci number, the only number whose
square equals the sum of it and itself, a Catalan number, and its own factorial.
Perhaps most interestingly, though, is that it is the only number that is both prime
and anti-prime. Of course, since we were interested in primes last year, this year
we want to know all about anti-primes!

An anti-prime (or highly composite number) is a natural number that has
more unique factors than any natural number less than it. Some anti-primes
include 1 (1 factor), 2 (2 factors), 4 (3 factors), 6 (4 factors), and 12 (6 factors).
Given an natural number i, find the smallest anti-prime greater than or equal to i.

Input:

● The first line will contain an integer n, the number of test cases
● n lines follow, each containing a single integer, i.

1 ≤ n ≤ 104

1 ≤ i ≤ 10 7

Output:

● For each test case, output a single integer: the smallest anti-prime greater
than or equal to i. 3

Input Output

4
1
12
13
10000000

1
12
24
10810800

3 Note: There is a strictly enforced 5-second runtime limit. Be sure to test your
program on cases with lots of large inputs to make sure it is fast enough.

